Higher-Order Functions

Episode #5 • Feb 26, 2018 • Subscriber-Only

Most of the time we interact with code we did not write, and it doesn’t always play nicely with the types of compositions we have developed in previous episodes. We explore how higher-order functions can help unlock even more composability in our everyday code.

Previous episode
Higher-Order Functions
Unbound methods
A problem
What’s the point?
Next episode

Unlock This Episode

Our Free plan includes 1 subscriber-only episode of your choice, plus weekly updates from our newsletter.


Today we’re going to dive a bit deeper into function composition. While function composition can seem simple, it’s not always so easy to take the existing functions we work with every day and fit them into our compositions. Let’s explore some reusable techniques that can aid us in transforming functions that are difficult to compose into pieces that fit snugly.

This episode is for subscribers only.

Subscribe to Point-Free

Access this episode, plus all past and future episodes when you become a subscriber.

See plans and pricing

Already a subscriber? Log in


  1. Write curry for functions that take 3 arguments.

    func curry<A, B, C, Z>(
      _ f: @escaping (A, B, C) -> Z
    ) -> (A) -> (B) -> (C) -> Z {
      return { a in { b in { c in f(a, b, c) } } }
  2. Explore functions and methods in the Swift standard library, Foundation, and other third party code, and convert them to free functions that compose using curry, zurry, flip, or by hand.

  3. Explore the associativity of function arrow ->. Is it fully associative, i.e. is ((A) -> B) -> C equivalent to (A) -> ((B) -> C), or does it associate to only one side? Where does it parenthesize as you build deeper, curried functions?


    If the function ((A) -> B) -> C were equivalent to (A) -> ((B) -> C) then we’d be able to write a function that can transform from one to the other. For example, we would be able to implement this function:

    func equivalence<A, B, C>(
      _ f: @escaping (A) -> ((B) -> C)
    ) -> ((A) -> B) -> C {
      return { f in
        // How to return something in C in here???

    However, it is not possible to implement this function.

    It turns out, the function arrow -> only associates to the right. So if we were to write:

    f: (A) -> (B) -> (C) -> D

    what that really means is:

    f: (A) -> ((B) -> ((C) -> D))
  4. Write a function, uncurry, that takes a curried function and returns a function that takes two arguments. When might it be useful to un-curry a function?

  5. Write reduce as a curried, free function. What is the configuration vs. the data?


    The reduce method on collections takes two arguments: the initial value to reduce into, and the accumulation function that takes what has been accumulated so far and a value from the array and must return a new accumulation value. The accumulation function is most like configuration in that it describes how to perform the reduce, and is most likely to be reused across many reduces. Whereas the initial value, and the collection being operated on, are like the data since it’s what you aren’t likely to have access to until the moment you want to reduce. So a possible curried signature of reduce might take the accumulation upfront, and delay the initial value and collection:

    func reduce<A, R>(
      _ accumulator: (R, A) -> R
    ) -> (R) -> ([A]) -> R {
      return { initialValue in
        return { collection in
          return collection.reduce(initialValue, accumulator)
  6. In programming languages that lack sum/enum types one is tempted to approximate them with pairs of optionals. Do this by defining a type struct PseudoEither<A, B> of a pair of optionals, and prevent the creation of invalid values by providing initializers.

    This is “type safe” in the sense that you are not allowed to construct invalid values, but not “type safe” in the sense that the compiler is proving it to you. You must prove it to yourself.


    The PseudoEither type could be defined as:

    struct PseudoEither<A, B> {
      let left: A?
      let right: B?
      init(left: A) {
        self.left = left
        self.right = nil
      init(right: B) {
        self.left = nil
        self.right = right

    It is not possible to construct values of PseudoEither where both left and right hold some value, but nevertheless it is not the compiler proving this but rather you having to make sure this remains true. We talk more about this in our episode on algebraic data types.

  7. Explore how the free map function composes with itself in order to transform a nested array. More specifically, if you have a doubly nested array [[A]], then map could mean either the transformation on the inner array or the outer array. Can you make sense of doing map >>> map?


Everything’s a Function.

Eitan Chatav • Friday Jan 18, 2013

This short article explains how everything can be seen to be a function, even values and function application. Eitan coins the term zurry to describe the act of currying a zero-argument function.